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The wake transition of the flow around two circular cylinders placed in staggered
arrangements with fixed streamwise separation of 5D and cross-stream separation
varying from 0 to 3D has been studied. The wake transition is compared to that
of a single isolated cylinder. Linear stability analysis utilizing Floquet theory and
direct numerical simulations using a spectral/hp element spatial discretization were
carried out. The unstable modes that first appear in the wake transition of the flow
around a single cylinder, which are the long-spanwise-wavelength mode A and the
short-spanwise-wavelength mode B, are also found in the flow around the staggered
arrangements. However, a third mode, referred to as mode C, is also present in the
wake transition of the flow around staggered arrangements, depending on the relative
positioning of the cylinders. This mode has an intermediate spanwise wavelength and
period-doubling character. The structure and onset characteristics of mode C are
analysed and the nonlinear character of the bifurcation for this mode is investigated.

1. Introduction
The flow around circular cylinders has been extensively studied owing to its practical

importance in engineering and scientific relevance in fluid mechanics. On the engineer-
ing side, there are a number of applications in mechanical, civil and naval engineering
that employ circular-cylindrical structures, such as heat exchangers, chimneys and off-
shore platforms. In scientific terms, the flow around circular cylinders presents various
important physical phenomena, such as separation, vortex shedding and transition.

In the next two subsections, some of the relevant research that has been carried out
on two different aspects of this flow is reviewed. These aspects are the wake transition
in bluff body flows and the flow around circular cylinders in staggered arrangements,
illustrated in figure 1.

1.1. Secondary instabilities in the wake

In the last two decades, much effort has focused on the study of the three-dimensional
transition that takes place in the von Kármán wake that appears in the flow
downstream of a single cylinder. This line of research in its contemporary form
was instigated by the seminal work of Williamson (1988), in which two distinct stages
were identified in the wake transition, spanning 160 � Re � 300. The limits of these
stages were identified by discontinuities in the curve obtained when the Strouhal
number (St) was plotted against the Reynolds number (Re) and these discontinuities
correspond to the manifestation of different three-dimensional structures in the
wake. The first to appear is called mode A, and it has a spanwise wavelength of
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Figure 1. Schematic drawing of two circular cylinders in a staggered arrangement.

approximately 4 diameters. The second is called mode B, and its spanwise wavelength
is close to 1 diameter. A number of papers on additional experiments and direct
numerical simulations (DNS) for this Reynolds number range have been published
since then with the aim of reproducing these findings, see for example Wu et al.
(1994), Zhang et al. (1995) and Thompson, Hourigan & Sheridan (1996). A great
leap forward occurred with the work of Barkley & Henderson (1996), who performed
high-accuracy Floquet stability analyses of two-dimensional time-periodic base flows,
precisely identifying the critical Reynolds numbers and also characterizing each of
the modes that take part in the wake transition. Williamson (1996) presented an
extensive study on the wake transition, setting the most significant results presented
so far against some new experimental data in order to show the different symmetries
of the modes and to put forward physical mechanisms to explain the origin of the
instabilities. He proposed that mode A originates from a elliptic instability in the
near-wake vortex cores, while mode B is a manifestation of a hyperbolic instability in
the braid shear layers. The research on the physical mechanisms of modes A and B
was extended in Leweke & Williamson (1998) and Thompson, Leweke & Williamson
(2001). The nonlinear characterization of the bifurcations through which the wake
becomes three-dimensional was first assessed by Henderson & Barkley (1996), who
found that mode A became unstable through a subcritical bifurcation. This work
was extended by Henderson (1997), where it was concluded that mode B bifurcated
through a supercritical route. Various other computational papers have expanded the
research on the nonlinear features of the first stages of the wake transition, see for
instance Persillon & Braza (1998) and Posdziech & Grundmann (2001).

Techniques similar to that presented in Barkley & Henderson (1996) have been used
to perform Floquet stability analysis of the flow around other bluff bodies. Robichaux,
Balachandar & Vanka (1999) analysed the stability of the wake of the flow around a
square cylinder, and found that, besides modes A and B, the geometrical configuration
they used presented a third mode of intermediate wavelength, which was called mode
S. The authors suggested that this was a period-doubling bifurcation, i.e. an instability
whose Floquet multiplier is real and negative. Later, however, Blackburn & Lopez
(2003) showed that this was in fact a quasi-periodic mode (the Floquet multiplier
is complex), and that the mistake was due to the method used in Robichaux et al.
(1999), which only allowed the identification of the real part of the Floquet multiplier.
This quasi-periodic mode, known as mode QP, was also observed in the wake of a
circular cylinder in Blackburn & Lopez (2003) and Barkley & Henderson (1996),
but it was stable in the Reynolds number range investigated. Later, Blackburn,
Marques & Lopez (2005) presented results of Floquet stability analysis of the flow
around a single cylinder carried out for higher Reynolds numbers, and showed that
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the mode QP becomes unstable for Re ≈ 377. Marques, Lopez & Blackburn (2004),
using bifurcation theory, showed that only three modes, modes A, B and QP, could
possibly be observed in a two-dimensional time-periodic wake with a spatio-temporal
symmetry H:

H(u, v)(x, y, t) = (u, −v)
(
x, −y, t + 1

2
T

)
where u and v are the x and y velocity components and T is the period of the wake.

However, for bluff body wakes that do not present this symmetry, a period-doubling
mode has also been found. As far as we are aware, the first evidence of this period-
doubling mode, which is commonly called mode C, appears in the computations
and experiments in Zhang et al. (1995) when a tiny trip wire was placed close to
a circular cylinder. More recently Sheard, Thompson & Hourigan (2003) identified
this mode in the flow around bluff rings by means of Floquet stability calculations.
This was extended in Sheard, Thompson & Hourigan (2004), in which a nonlinear
characterization of mode C was made by means of DNS. Subsequently, additional
computational results were compared to experimental data in Sheard et al. (2005b)
and, more recently, in Sheard, Thompson & Hourigan (2005a) a physical mechanism
to explain how the mode C instability is sustained has been suggested.

1.2. The flow around circular cylinders in staggered arrangements

An important aspect of the flow around bluff bodies such as circular cylinders is
that, if two or more bodies are placed in close proximity in the fluid stream, the flow
field and fluid loads change dramatically compared to the flow around an isolated
body. This phenomenon is known as flow interference. Comparatively few papers
on the flow around groups of cylinders have been published, despite the fact that
in all the applications cited at the beginning of this section it is common to have
circular-cylindrical structures grouped together. The usual approach is to consider
only a pair of cylinders of equal diameter, since in such configurations the number
of parameters is kept sufficiently low for a proper systematic analysis and the basics
of the interference mechanisms can be more easily understood.

An example of this can be found in Zdravkovich (1977), in which an extensive
review of flow interference between two circular cylinders in tandem, side-by-side
and staggered arrangements was conducted. For all these configurations, discussions
about pressure distributions, velocity profiles, flow regimes and patterns, drag and
lift forces and Reynolds number effects were presented. In relation to staggered
arrangements, Zdravkovich (1977) investigated the physical origin of the non-zero lift
forces that are observed for these configurations. Later, Sumner, Price & Päıdoussis
(2000) put forward a taxonomy for the flow regimes observed in their experiments with
staggered arrangements. Based on flow visualization and force measurements, nine
different patterns were identified according to the relative position of the cylinders.
This work was extended by Akbari & Price (2005), who reproduced the flow regimes
using computational simulations and scrutinized the physical features observed in
each.

As far as we are aware, no computational work addressing the three-dimensional
aspects of the flow around staggered arrangements of circular cylinders has yet been
published. This paper focuses on the changes that occur in the transition in the
wake when the flow around staggered arrangements is compared to the flow around
a single cylinder. The instabilities that arise at the beginning of the transition are
characterized by means of linear stability analysis of two-dimensional periodic base
flows and also fully three-dimensional simulations.
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The paper is organized as follows. In § 2, the numerical methods used to calculate
the base flows and their stability are described. Details of the parameters used in
the simulations are given in § 3, and in § 4 the results are presented and analysed.
Finally, in § 5, conclusions are drawn regarding the effect of the relative position of
the cylinders on the three-dimensional bifurcation scenario.

2. Overview
The methodology adopted in this paper can be divided into three distinct parts.

The first refers to simulations of two-dimensional time-dependent flows by means
of numerical solution of the incompressible Navier–Stokes equations. The second
comprises stability calculations of two-dimensional time-periodic flows with respect
to three-dimensional perturbations, and this is achieved using Floquet theory. Finally,
the third part consists of three-dimensional simulations of selected cases, in order
to analyse the nonlinear behaviour of some of the bifurcations found. In the next
three subsections, an overview of the mathematical formulation and computational
implementation of each of these techniques is provided.

2.1. Two-dimensional base flow calculation

We consider a two-dimensional incompressible viscous flow, which is governed by the
Navier–Stokes equations. These equations can be written in non-dimensional form
using the cylinder diameter D as the reference length and the free-stream flow speed
U∞ as the reference speed:

∂u
∂t

= −(u · ∇)u − ∇p +
1

Re
∇2u, (2.1)

∇ · u = 0, (2.2)

where u ≡ (u, v, w) is the velocity field, t is the time, p is the static pressure and
Re = U∞D/ν is the Reynolds number, where ν is the kinematic viscosity. The pressure
is assumed to be scaled by the constant density ρ.

These equations were discretized following the Spectral/hp method as described in
Karniadakis & Sherwin (2005). To generate the base flows, equations (2.1) and (2.2)
were solved in two dimensions, using a stiffly stable splitting scheme (Karniadakis,
Israeli & Orszag 1991).

2.2. Floquet stability analysis

For this part, a similar approach to that utilized in Barkley & Henderson (1996)
was used. We considered periodic two-dimensional base flows U(x, y, t), with period
T , and investigated their stability with respect to an infinitesimal three-dimensional
perturbation u′(x, y, z, t). The equations that govern the perturbation evolution to
leading order are the linearized Navier–Stokes equations:

∂u′

∂t
= −(U · ∇)u′ − (u′ · ∇)U − ∇p′ +

1

Re
∇2u′, (2.3)

∇ · u′ = 0, (2.4)

where p′(x, y, z, t) is the pressure perturbation. The velocity boundary conditions that
were imposed on this system are u′ = 0 on boundaries where Dirichlet conditions are
specified for the base flow, and ∂u′/∂n = 0 on boundaries where Neumann conditions
are specified for the base flow.

The right-hand side of (2.3) subjected to the incompressibility constraint of equation
(2.4) can be represented by an operator L, so we can write the evolution equation in
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the compact form:

∂u′

∂t
= L(u′). (2.5)

The operator L(u′) is T -periodic because it depends linearly on the base flow U(x, y, t),
which is T -periodic. Therefore, the stability of (2.5) can be investigated using Floquet
analysis. The solutions of (2.5) can be decomposed into a sum of solutions of the
form ũ(x, y, z, t)eσ t , where ũ(x, y, z, t), which are called Floquet modes, are T -periodic
solutions. The complex exponents σ are the Floquet exponents, and the sign of their
real parts determines the stability of the system. However, in Floquet-type problems
it is more usual to consider the Floquet multiplier µ ≡ eσT instead of the Floquet
exponent. If the Floquet multiplier is located inside the unit circle (|µ| < 1), then the
solution will decay exponentially with time, and if the multiplier is located outside
the unit circle (|µ| > 1), the solution will grow exponentially with time, rendering the
system unstable.

If we consider a system that is homogeneous in the spanwise direction z, a further
simplification can be made. A perturbation of the velocity field can be expressed in
terms of the Fourier integral:

u′(x, y, z, t) =

∫ ∞

−∞
û(x, y, β, t)eiβzdβ (2.6)

and similarly for p′. Since equation (2.5) is linear, modes with different β do not
couple. Moreover, because the base flow z-velocity component is zero, perturbations
of the form

u′(x, y, z, t) = (û cosβz, v̂ cosβz, ŵ sin βz), (2.7)

p′(x, y, z, t) = p̂ cos βz (2.8)

remain of this form under the operator L. Thus, the Floquet modes ũ(x, y, z, t)
will necessarily be of this form. The expressions (2.7) and (2.8) are appropriate to
represent a Floquet mode corresponding to a real Floquet multiplier. However, if the
multiplier is complex (as in the case of the QP mode in Blackburn & Lopez 2003)
then a Fourier mode containing both real and imaginary components is necessary
to represent the Floquet mode. As the velocity components (û, v̂, ŵ) and pressure p̂

depend only on x, y and t , the three-dimensional stability problem can be reduced
to a series of two-dimensional stability problems, each with a different value of β .
Consequently, the stability of such two-dimensional incompressible periodic flows to
three-dimensional perturbations can be analysed by computing the Floquet multipliers
and corresponding modes as a function of Re and β . Details on how the Floquet
multipliers and modes were calculated are given in the Appendix.

2.3. Three-dimensional simulations and nonlinear characterization of the transition

Linear stability calculations can predict the critical Reynolds numbers and unstable
mode topology and wavelength. However, in order to comprehend the evolution of
the instability beyond its onset, nonlinear effects have to be taken into account, and
full three-dimensional simulations must be carried out.

The three-dimensional computational calculations utilized the same framework
as outlined in § 2.1. However, the spanwise direction was treated using a Fourier
expansion in the discretization. This approach was introduced by Karniadakis (1990)
and has been often employed since then in cases where the geometry has one
homogeneous direction. The meshes utilized in the two-dimensional simulations can
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be re-used, since the three-dimensional domains for this type of calculation consist
of two-dimensional discretizations repeated in the spanwise direction. In addition,
the way the solution algorithm is developed makes the parallelization of the code
straightforward and efficient.

The three-dimensional simulation results enabled a nonlinear analysis of the
transitions to be conducted. The Landau equation has often been successfully used
in hydrodynamics as a low-dimensional model to describe the nonlinear behaviour
of transitions close to their respective critical points (see for example Sheard et al.
2004; Henderson 1997; Provansal, Mathis & Boyer 1987; Dušek, Le Gal & Fraunié
1994; Noack & Eckelmann 1994). The idea behind this equation is that for a small
perturbation amplitude A the linear term determines the behaviour of dA/dt . If
the system is unstable the modulus of A grows and the higher-order terms become
important at a certain point. Here, the Landau equation is written up to third order,
using the same notation as in Sheard et al. (2004):

dA

dt
= (σ + iω) A − l(1 + ic)|A|2A + · · · , (2.9)

where A(t) is the complex amplitude of the perturbation mode being considered.
The term (σ +iω) in (2.9) is the eigenvalue obtained from the linear stability analysis,

and in the present case is the Floquet exponent. To first-order approximation, the
perturbation grows at a rate given by σ , so the flow is stable if σ is negative and
unstable otherwise. In addition, still to first-order approximation, the perturbation
oscillates with angular frequency ω, which is non-zero for a Hopf bifurcation. The
parameter l is the real part of the third-order coefficient and the classification of
the transition depends directly on its sign. If l > 0, the transition is supercritical,
thus non-hysteretic, and the behaviour of the transition until saturation should be
adequately described by the Landau equation truncated at third order. The reason
for this is that the real part of the third-order term is negative and counter-balances
the growth provoked by the first-order term, eventually making the instability reach a
saturated state, so no higher-order terms are necessary. On the other hand, if l < 0, the
proper description of the transition requires terms of at least fifth order, as both first-
and third-order terms promote the growth of A and the numerical and experimental
observations indicate that this growth must saturate at some point. In this case, the
transition is said to be subcritical. Lastly, c is called the Landau constant and it
modifies the oscillation frequency at saturation.

The complex amplitude A can be written in polar form, A(t) = ρ(t)eiΦ(t), and after
some simple algebra is performed, the real and imaginary parts of (2.9) become

d log(ρ)

dt
= σ − lρ2, (2.10)

dΦ

dt
= ω − lcρ2. (2.11)

Given (2.10), a graph of d log(|A|)/dt against |A|2 can be plotted and used to determine
the values of σ and l. The value where the curve intercepts the y-axis is σ and the
slope of the curve close to the y-axis gives −l. If the cubic truncation of the Landau
model is sufficient to describe the transition, then this plot should be linear; if not,
then at least fifth-order terms are necessary to describe the transition.
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Figure 2. Example of a mesh used in the calculations.

Lastly, the amplitude A must be defined in terms of flow variables. In the present
work, this amplitude is defined by

|A(t)| =

[∫
Ω

|û1(x, y, t)|2
]1/2

,

where Ω is the two-dimensional cross-section of the domain being considered and
û1(x, y, t) is the coefficient at time t of the Fourier expansion term whose wavenumber
is the same as the instability in question. A similar expression was used in Henderson
& Barkley (1996) and Henderson (1997); the only difference is a multiplicative
constant.

3. Numerical simulations
Figure 1 shows a schematic drawing of the geometry investigated in this research.

The two cylinders have the same diameter D. For all cases, the streamwise distance
between the centres of the cylinders, Lx , is 5D. This distance was chosen because, in
a previous study that considered pairs of circular cylinders in tandem arrangements
with different Lx/D (Carmo 2005), the configuration with Lx/D = 5 presented the
highest RMS value of the lift coefficient and was outside the Lx/D range for which the
transition between different vortex shedding regimes occurs (Mizushima & Suehiro
2005). The transversal distance, Ly , was varied from 0 to 3D, with intervals of
0.5D. Calculations were also carried out for the single-cylinder case, which served
as a benchmark for comparison with the two-cylinder cases. The Reynolds numbers
simulated were 200, 250, 300 and 350, covering the wake transition range for the flow
around a single cylinder.

Quadrilateral meshes were generated for the computations; an example is shown in
figure 2. The size of the domain and the discretization approach were chosen based
on a previous work (Carmo 2005), in which an extensive convergence study was made
considering the flow around a single cylinder and using the same numerical method.
The upstream boundary (boundary at the left-hand side in figure 2) is located 36D
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from the upstream cylinder centre, the side boundaries (top and bottom boundaries
in figure 2) are located 45D from the closest cylinder centre and the downstream
boundary is located 95D from the downstream cylinder. The domains extended far
downstream in order to consider the vortex interaction that takes place in the far
wake, as reported in § 4.1. The number of elements for the mesh with a single cylinder
was 466, and for the meshes with two cylinders the number of elements varied from
568 to 721, depending on Ly . The meshes were the same for all Reynolds numbers,
varying only according to the geometrical configuration.

Eighth-degree polynomial expansions were used as basis functions for the spatial
discretization, and the integration in time was second-order accurate. The value of
the non-dimensional time step varied from 0.004 to 0.006, depending only on the
Reynolds number. Uniform stream velocity boundary conditions (u = 1, v = 0) were
imposed at the upstream boundary and upper and lower surfaces of the computational
domain. At the cylinder walls, a no-slip condition (u = 0, v =0) was imposed, and at
the downstream border Neumann boundary conditions, ∂u/∂n = 0, ∂v/∂n = 0 were
applied. For the pressure, the high-order boundary condition proposed by Karniadakis
et al. (1991) was used on all boundaries.

The periodic base flows were calculated using direct numerical simulation,
employing the method described in § 2.1. The first step in the process was to let
the simulations reach an asymptotic, time-periodic state. In order to check if the
system had reached a time-periodic state, the time history of the upstream cylinder
lift coefficient calculated at every time step was recorded. Next, ten consecutive peak
values and the times at which these peak values occurred in the series were taken. If
the ratio between the standard deviation and the mean of these peak values and also
the ratio between the standard deviation and the mean of the time interval between
two consecutive peaks were less than 0.5%, then the simulation was considered to
have reached a periodic state. Subsequently, 32 equally spaced snapshots of the
velocity solution were recorded per cycle. These snapshots were used to generate the
base flow for the stability calculations. In the single-cylinder cases, only one vortex
shedding cycle was considered for the Floquet calculations. However, for all cases
with two cylinders, two vortex shedding cycles were used for the Floquet calculations,
because the vortex interaction that took place in the far wake had period 2T , where
T is the vortex shedding period (see § 4.1).

For all stability calculations, a Krylov subspace of dimension of 10 was used,
and the perturbation initialized with the field (u′, v′) = (f, f ), where f is the positive
number that causes the field to have a unitary norm. The calculations were carried
out until the residual of the largest eigenvalue reached a value less than 10−5.

The numerical method used here has been previously utilized both for direct
numerical simulations (see the examples and references in Karniadakis & Sherwin
2005) and Floquet stability calculations (Barkley & Henderson 1996; Robichaux
et al. 1999; Sheard et al. 2003), in which convergence for these applications has been
verified. However, it was necessary to determine whether the size and discretization
of the domains were adequate for the cases investigated in the present work.

For this reason, additional simulations were carried out for the cases (Ly/D = .0,
Re = 200), (Ly/D = 0, Re = 350), (Ly/D = 3.0, Re = 200), (Ly/D = 3.0, Re = 350). Two
refinements were considered separately: the first was to increase the polynomial degree
from 8 to 10, and the second to extend the original mesh by 5D on all four external
boundaries. For this validation exercise, the base flow was calculated and the Floquet
stability analysis was carried out with a fixed value of βD = 2.0, using the base flow
generated with the largest mesh. The parameters monitored in the base flow results
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Number of base flow snapshots Ly/D = 0 Ly/D = 3.0
in two shedding cycles Re = 200 Re = 350 Re = 200 Re = 350

16 1.11919 4.66509 0.847345 4.40672
32 1.14009 5.05173 0.860698 4.40394
64 1.13150 4.86170 0.852712 4.20596
128 1.13184 4.85856 0.852498 4.19924

Table 1. Convergence of the dominant eigenvalue for βD = 2.0, varying the number of
equally spaced snapshots used to reconstruct the base flow.

were the Strouhal number (St), the mean drag coefficient and the RMS of the lift
coefficient, all of which were evaluated for both cylinders, and from the Floquet
calculations the value of the Floquet multiplier was also tested for convergence. In
all cases, all parameters varied less than 1% when the refined meshes were compared
to the reference meshes.

In addition, further tests were performed in order to ensure that considering 32
snapshots per shedding cycle was sufficient to properly reconstruct the base flows.
The same cases used in the refinement test were re-run varying the number of base
flow snapshots from 16 to 128 over two shedding periods. The results displayed in
table 1 show that the difference between the values of the Floquet multiplier obtained
using 64 and 128 snapshots over two shedding cycles was less than 0.2%, confirming
that 32 snapshots per shedding cycle are enough to satisfactorily describe the base
flow.

For the three-dimensional simulations, the meshes and parameters of the
corresponding two-dimensional cases were re-used, and periodic boundary conditions
were set on the boundary planes located at the extreme values of z.

4. Results
4.1. Base flow calculations

The vortex shedding regime in the base flow changed significantly in the range of
Ly investigated. The changes in the regime can be observed in figure 3, which shows
instantaneous vorticity contours for different Ly . The Strouhal number (St) was
calculated by performing a fast Fourier transform of the lift coefficient time history
of both cylinders. For every case in the present work, the Strouhal number for the
upstream cylinder was the same as obtained for the downstream one.

Analysing figure 3(a), it can be seen that, for Ly/D =0, the vortices shed by
the upstream cylinder hit the downstream one. We believe that the pressure and
velocity fluctuations imposed near the second body synchronized the vortex shedding.
For 0.5 � Ly/D � 1.0, the vortices shed from the upstream cylinder did not directly
impinge upon the downstream cylinder, but interacted with the vortex being shed
from the lower surface of the downstream cylinder, stretching and pulling it from the
near wake of the second cylinder, as shown in figure 3(b). In all cases with Ly/D � 1.0,
the vortex interactions that took place in the near wake of the downstream cylinder
were notably different from those in the near wake of the upstream cylinder, as we
can see in figures 3(a) and 3(b). In the upstream near wake, the interaction between
one vortex and the shear layer of opposite-sign vorticity on the other side of the
cylinder, which, according to the model proposed in Gerrard (1966), eventually leads
to the shedding of a vortex formed in the previous half-cycle, was always very clear.
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(a) Ly / D = 0 (b) Ly / D = 1.0

(c) Ly / D = 1.5 (d ) Ly / D = 2.0
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Figure 3. Instantaneous vorticity contours, Re = 200. Contours vary from ωzD/U∞ = −2.2
(light contours) to ωzD/U∞ =2.2 (dark contours).

On the other hand, the shedding in the near wake of the downstream cylinder seemed
to be forced by the influence of the upstream wake. The wake of the downstream
cylinder was much wider and no strong interactions between vortices and shear layers
of opposite sign were observed in the near wake of the downstream cylinder.

We can see in figure 3(d) that, for configurations with Ly/D � 2.0, the interaction
between vortices of the near wakes of the downstream and upstream cylinders
became weaker and the vortices originating from the downstream cylinder were
not deformed nor significantly pulled towards the upstream wake. In addition, the
shedding mechanisms in both near wakes are very similar, corresponding qualitatively
to what happens in the near wake of the flow around a single cylinder. Nevertheless, a
synchronization of the wakes due to the proximity of the vortices can still be observed.

The arrangement with Ly/D = 1.5 could not be classified into either of the two
regimes presented above. The flow around this configuration is in the transition range
between these two regimes, being very unstable in terms of the patterns observed
in the wake downstream and corresponding to a peak in the absolute value of the
mean lift coefficient of the downstream cylinder. In figure 3(c), we see that the vortex
formed from the bottom of the downstream cylinder (the positive vortex) is split, and
part of it merges with the wake of the upstream cylinder, while the rest follows the
direction of the downstream cylinder wake. However, this does not occur regularly
every cycle; on some occasions the complete vortex is pulled towards the upstream
cylinder wake. For Re � 250, the behaviour of the vortex in question in each cycle
appears random.

For every configuration with two cylinders, irrespective of the values of Ly and Re,
different kinds of vortex interactions were observed in the far wake. This interaction
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(a) Ly /D = 0

(b) Ly /D = 1.5

(c) Ly /D = 3.0

2

0y

y

y

0 5 10 15 20

–2

2

4

0

0 5 10 15 20 25

–2

–4

2

4

0

20 25 30 35

x

40 45

–2

–4

Figure 4. Instantaneous vorticity contours, Re = 250. Contours vary from ωzD/U∞ = −2.2
(light contours) to ωzD/U∞ = 2.2 (dark countours) for (a) and (b) and from ωzD/U∞ = −1.1
(light contours) to ωzD/U∞ = 1.1 (dark countours) for (c).

took place in a limited region, and gave rise to a different vortex configuration in the
wake downstream, which will here be referred to as a secondary wake. The secondary
wake had a period of 2T , where T was the period of vortex shedding, because
its formation always involved the merging of vortices from two successive cycles.
Figure 4 shows instantaneous vorticity contours, focusing on the vortex interaction
region that arises in the far wake, for three different configurations. It should be
noted that the type of interaction is very different in each of the illustrated cases,
although all of them involve vortex merging. For Ly/D � 1.5, this vortex interaction
region appears between 10D and 20D downstream of the front cylinder, while for
configurations of higher Ly , when two distinct wakes are observed, this region appears
further downstream, at distances as far as 30D downstream of the front cylinder.
Similar patterns in the far wake were observed in smoke visualizations performed by
Zdravkovich (1972) for different tandem and staggered arrangements.
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Figure 5. Flow around a single cylinder. (a) Modulus of the Floquet multiplier, |µ|, as a
function of the spanwise wavenumber times the cylinder diameter, βD, for various Reynolds
numbers. (b) Neutral stability curves (curves that pass through points where |µ| = 1), plotted
in a map of Reynolds number (x-axis) and mode non-dimensional wavelength (y-axis); in the
region on the right hand side of the curves the two-dimensional periodic flow is unstable with
respect to three-dimensional perturbations; continuous and dashed curves are from Barkley &
Henderson (1996) and refer to modes A and B respectively; ×, mode A neutral points, present
investigation; 	, mode B neutral points, present investigation.

4.2. Floquet stability calculations

4.2.1. Single cylinder

In order to validate the code and to have a benchmark for the other cases, the
first stage of the stability calculations consisted of the Floquet analysis of the flow
around a single cylinder. For this particular configuration, we used 32 equispaced
time slices taken from a single vortex shedding period T to use in a temporal Fourier
representation of the base flow. The values of the modulus of the Floquet multiplier,
|µ|, for these calculations are shown in figure 5(a). Two different unstable modes
are present in the considered Reynolds number range. Following the nomenclature
suggested by Williamson (1988), they are called modes A and B. Mode A, which
corresponds to the peaks of lowest βD in each of the curves shown in figure 5(a),
is, in terms of Reynolds number, the first to appear, and is already unstable at
Re = 200. For this mode, the wavelength of maximum growth rate is around 4.0D.
Mode B corresponds to the peak of higher βD, having a wavelength of maximum
growth rate of about 0.8D, and, among the cases calculated, it is only unstable for
Re = 300 and Re = 350, although a peak can already be seen in the stable region for
Re = 250. Figure 5(b) shows the good agreement between the neutral stability curves
for modes A and B presented by Barkley & Henderson (1996) and some points of
neutral stability calculated in the present work. The critical Reynolds numbers and
corresponding perturbation wavelengths in the present study were ReA =190 ± 1,
LzA/D = 3.97 ± 0.01 for mode A and ReB = 260.5 ± 1.0, LzB/D = 0.825 ± 0.010 for
mode B. These values coincide with those reported in Barkley & Henderson (1996)
(ReA = 188.5 ± 1.0, LzA/D = 3.96 ± 0.02 and ReB = 259 ± 2, LzB/D = 0.822 ± 0.007)
within the uncertainty bounds.

An important difference between modes A and B is their spatio-temporal symmetry
(Barkley & Henderson 1996; Blackburn et al. 2005). The three-dimensional structure
of the normalized Floquet mode associated with a spanwise wavenumber β can be
reconstructed by considering the perturbation in the vector form:

u′(x, y, z, t) = [ũ(x, y, t) cosβz]î + [ṽ(x, y, t) cosβz] ĵ + [w̃(x, y, t) sinβz]k̂. (4.1)
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(a) Mode A – Re = 200, βD = 1.571 (b) Mode B – Re = 300, βD = 7.570
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Figure 6. x-vorticity of the unstable eigenvector on the line x = 2.0D. Light regions
correspond to negative and dark to positive streamwise vorticity of the eigenvector. Time
is non-dimensionalized using the shedding period.

The perturbation vorticity field can be calculated using the modified nabla operator
∇β =(∂/∂x, ∂/∂y, −iβ), leading to

ω(x, y, z, t) = [ω̃x(x, y, t) sinβz]î + [ω̃y(x, y, t) sinβz]ĵ + [ω̃z(x, y, t) cosβz]k̂. (4.2)

The T -periodic base flow obeys a reflectional symmetry about the wake centreline
(y = 0), when time is advanced by T/2. Following Robichaux et al. (1999), this
symmetry is called RT symmetry (R for reflectional and T for translation in time).
Mode A has the following RT symmetry:

Mode A :

⎧⎨
⎩

ũ(x, y, z, t) = ũ(x, −y, z, t + T/2),
ṽ(x, y, z, t) = −ṽ(x, −y, z, t + T/2),
w̃(x, y, z, t) = w̃(x, −y, z, t + T/2),

(4.3)

which is the same as the symmetry of the two-dimensional base flow. In contrast,
mode B has the opposite symmetry to mode A:

Mode B :

⎧⎨
⎩

ũ(x, y, z, t) = −ũ(x, −y, z, t + T/2),
ṽ(x, y, z, t) = ṽ(x, −y, z, t + T/2),
w̃(x, y, z, t) = −w̃(x, −y, z, t + T/2).

(4.4)

Most of the published results regarding these modes focus on the streamwise vorticity
component. Using (4.3), the following expression for the x-component vorticity ωx on
mode A is derived:

ω̃x(x, y, z, t) = −ω̃x(x, −y, z, t + T/2). (4.5)

For mode B, using (4.4), the streamwise vorticity is found to obey the symmetry

ω̃x(x, y, z, t) = ω̃x(x, −y, z, t + T/2). (4.6)

In figure 6, streamwise vorticity contours evaluated in time on a vertical line 2D

downstream of the cylinder are presented. The symmetry of the form and absolute
strength of the vortices can be clearly observed. For mode A, the vorticity has different
sign each side of the wake centreline; for mode B, the vorticity has the same sign
throughout the cycle.

4.2.2. Staggered arrangements

Having reviewed the single-cylinder case, we now consider the stability of the
periodic flow around pairs of cylinders in staggered arrangements. For these cases,
two shedding periods were considered, taking into account the 2T -periodicity of
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Ly/D ReA LzA/D ReB LzB/D ReC LzC/D

0.0 180 3.78 272 0.82 – –
0.5 180 3.79 275 0.82 – –
1.0 183 3.86 – – 191 1.55
2.0 190 3.94 265 0.83 178 1.65
2.5 192 3.97 264 0.83 198 1.45
3.0 193 3.98 263 0.83 209 1.45

Single cylinder 190 3.97 260.5 0.825 – –

Table 2. Critical Reynolds numbers and corresponding perturbation wavelengths. The
critical Reynolds numbers have an uncertainty of ±1 and the corresponding perturbation
non-dimensional wavelengths have an uncertainty of ±0.01 for all cases. The pair (Re,Lz/D)
for which the wake first becomes three-dimensional in each configuration is written in bold
face.

(a)  Ly / D = 0 (b)  Ly / D = 0.5

8
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4

2

0 5 10 15

Re = 200
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Re = 300
Re = 350

6

4
|µ|

2

0 5
βD βD

10 15

Figure 7. Modulus of the Floquet multiplier, |µ|, as a function of the spanwise wavenumber
times the cylinder diameter, βD, for various Reynolds numbers.

the far wake. Thus, 64 time slices of the two-dimensional simulations were used to
generate each periodic base flow. Owing to its transitional character, the case with
Ly/D = 1.5 did not present a reasonably periodic wake for any of the Reynolds
numbers tested. Therefore no Floquet stability results are presented for this case,
since the level of uncertainty of the calculations would be too high for a proper
analysis.

For small Ly (more specifically for Ly/D = 0 and 0.5) the shape of the curves
|µ| versus βD was similar to the single-cylinder case. Figure 7 shows the values of
|µ| for the configurations with Ly/D = 0 and 0.5. The two peaks, corresponding to
mode A and mode B, are clearly evident. There are significant changes, however.
Table 2 shows that for Ly/D = 0 and 0.5 mode A becomes unstable earlier in terms
of Reynolds numbers compared to the single-cylinder case, and the wavelength of
the unstable mode at the bifurcation is somewhat shorter. Moreover, the growth
per shedding period computed for Ly/D = 0 and 0.5 in the range corresponding to
mode A was larger than those for the single cylinder at the same Reynolds number
and spanwise wavenumber (the growth per shedding period is equal to the square root
of the values plotted in figure 7 for Ly/D = 0 and 0.5 and equal to the values plotted
in figure 5(a) for the single cylinder). On the other hand, mode B becomes unstable
later, in terms of Reynolds number, for Ly/D = 0 and 0.5 than for the single-cylinder
case, and the wavelength of the unstable mode at the bifurcation is approximately
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Figure 8. Instantaneous streamwise vorticity contours of eigenvectors (greyscale) superposed
on spanwise vorticity contours of the base flow (lines), for flow around two cylinders with
Ly/D = 0, Re = 300. Light regions correspond to negative and dark to positive x-vorticity of
the eigenvector. The solid and dashed lines represent positive and negative z-vorticity contours
of the base flow respectively.

the same. Also in contrast with the behaviour observed for mode A, the growth per
shedding period in the range corresponding to mode B was smaller for Ly/D = 0 and
0.5 than for the single cylinder.

In order to examine the structure of the modes for Ly/D = 0 and 0.5 in greater detail,
figure 8 shows streamwise vorticity contours of the unstable eigenvectors. Figure 8(a)
shows structures characteristic of mode A. Of note is that the instability first develops
in the near wake of the upstream cylinder, but then grows stronger when it reaches
the downstream cylinder. Also of note is the strong streamwise vorticity in the region
of vortex interaction that initiates the secondary wake. It seems that the vortex
merging and straining that occur in this region helps to reinforce mode A structures.
The results are different for mode B. In figure 8(b), we see that the instability first
develops in the near wake of the upstream cylinder, as in the mode A case. However,
the streamwise vortical structures do not seem to gain significant strength when they
impinge upon the downstream cylinder. Also, no mode B structures were observed in
the vortex interaction region that initiates the secondary wake.

For Ly/D = 1.0, the transition deviates from that observed for the flow around
a single cylinder. A peak of intermediate wavenumber dominates, as can be seen
in figure 9(a). This corresponds to mode C, which will be described and analysed
in more detail in § 4.3. The peak relating to mode B is only visible for Re = 350;
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Figure 9. Flow around a pair of cylinders with Ly/D = 1.0. (a) Modulus of the Floquet
multiplier, |µ|, as a function of the spanwise wavenumber times the cylinder diameter, βD, for
various Reynolds numbers. (b) Neutral stability curves.

nevertheless it was verified that this mode is already unstable for Re =300, but
that the corresponding Floquet multiplier is smaller than that relating to mode C.
Figure 9(b) shows the neutral stability curves for this configuration, and the critical
Reynolds numbers and corresponding perturbation wavelengths are displayed in
table 2. The critical Reynolds number for which mode A became unstable was
considerably lower than for a single cylinder, and the corresponding wavelength was
somewhat smaller.

For configurations in which two distinct wakes could be observed (2.0 � Ly/D �
3.0), mode C was also detected. The graphs on the left-hand side of figure 10
exhibit three distinct peaks, and the peak relating to mode C appears in a region of
intermediate wavenumbers, between the peaks associated with modes A and B.

The right hand side of figure 10 shows the neutral stability curves for the same
configurations, and the critical Reynolds numbers and corresponding perturbation
wavelengths are also displayed in table 2. For the three cases, mode A and mode B
critical Reynolds numbers and corresponding perturbation wavelengths were close
to the values found for the isolated-cylinder case. Nevertheless, the neutral stability
curve for mode C differed considerably when these cases are compared. Table 2 shows
that mode C becomes unstable later at a progressively increasing Re as Ly increases;
the right-hand side of figure 10 shows that the region of mode C instability becomes
thinner. This behaviour is not surprising, given that the larger the distance between
the cylinders, the closer the flow is to the single-cylinder case, for which no mode C
instability is observed.

Another result worth mentioning is that, for 2.0 � Ly/D � 3.0, Re = 300 and 350,
convergence of the second-most leading Floquet multiplier was also possible for a
few wavenumbers in the ranges associated with modes A and B. Indeed, the Floquet
modes associated with these multipliers did correspond to the appearance of modes
A and B in the near wake of the downstream cylinder. However, a systematic analysis
of these modes was not possible since we were unable to satisfactorily converge the
second leading Floquet multiplier for all wavenumbers.

4.3. Mode C

In this section, the intermediate-wavenumber mode that appeared in the wake
transition for Ly/D = 1.0, 2.0, 2.5 and 3.0 is examined. This mode is in fact a
mode C instability (Zhang et al. 1995; Sheard et al. 2003), as will be shown later,
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times the cylinder diameter, βD, for various Reynolds numbers (left-hand side) and neutral
stability curves (right-hand side). Flow around staggered arrangements.

so this designation will be used from now on. Figure 11 shows instantaneous x-
vorticity contours of an eigenvector of mode C. A significant difference between
this mode and modes A and B is that mode C originates in the near wake of the
downstream cylinder, while modes A and B first appear in the near wake of the
upstream cylinder. The region where mode C develops has a dominant frequency
equal to the shedding frequency, unlike the far-wake region, which has a dominant
frequency of half the shedding frequency. The Floquet multiplier for mode C using
a two-dimensional base flow comprising two shedding cycles was real and positive.
In order to verify if the mode in question was a synchronous or a period-doubling
mode, additional calculations were carried out, considering only one shedding period
of the two-dimensional base flow in the Floquet analysis, which corresponds to a
single Poincaré map. The results lead to real negative Floquet multipliers, therefore
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Figure 11. Instantaneous streamwise vorticity contours of the eigenvector (greyscale)
superposed on spanwise vorticity contours of the base flow (lines), Re = 200, βD = 4.0. Light
regions correspond to negative and dark to positive streamwise vorticity of the eigenvector.
The solid and dashed lines represent positive and negative z-vorticity contours of the base flow
respectively.

demonstrating that the mode is a three-dimensional period-doubling instability on
the two-dimensional base flow of one shedding period, just like the mode C instability
reported by Sheard et al. (2003).

Comparing figures 11(a) and 11(b), it is possible to see that the streamwise vorticity
contours of mode C have striking differences in shape depending on the shedding
mode. For Ly/D =1.0, the positive vortices shed from the downstream cylinder in
the base flow are pulled away from the body by the vortices that are shed from the
upstream cylinder. Consequently, the negative vortices form an isolated vortex line,
where mode C develops. This is an extreme case of wake asymmetry. For Ly/D � 2.0
(figure 11b), a complete wake is being formed after the downstream cylinder, so the
level of asymmetry is much weaker, although doubtless present. In such cases mode
C streamwise vorticity can be observed in both sides of the wake.

Figure 12 shows the time history of the x-vorticity contours of the eigenvector of
mode C on a vertical line 2D aft of the downstream cylinder (7D aft the upstream
cylinder). The first important aspect to notice is that this mode is not symmetric in
relation to the wake centreline (in figure 12, the wake centreline is y = 2D). A second
aspect of note is that this mode has a period of 2T , where T is the shedding period,
in contrast with modes A and B, which are T -periodic. The symmetry of mode C is
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Figure 12. Normalized x-vorticity of the unstable eigenvector on the line x =7D, configu-
ration Ly/D = 2.0, Re =300 and βD = 4.0. Light regions correspond to negative and dark
to positive streamwise vorticity of the eigenvector. Time is non-dimensionalized using the
shedding period.

thus only temporal, and has the form

Mode C:

⎧⎨
⎩

ũ(x, y, z, t) = −ũ(x, y, z, t + T ),
ṽ(x, y, z, t) = −ṽ(x, y, z, t + T ),
w̃(x, y, z, t) = −w̃(x, y, z, t + T ),

which translates to the streamwise vorticity:

ω̃x(x, y, z, t) = −ω̃x(x, y, z, t + T ).

Figure 13 shows plots of vorticity iso-surfaces of the base flow combined with
the unstable Floquet mode for modes A, B and C. The three-dimensional structures
of modes A and B are very similar to those observed in the flow around a single
cylinder (Henderson 1997). For mode A, the streamwise vorticity is stronger in the
primary vortex cores, whereas for mode B it is stronger in the braid shear layers. This
similarity in the structures is not surprising given the already mentioned similarities
in the symmetry and wavelength. Apart from the different wavelength and its period-
doubling nature, mode C presents a structure similar to mode B, in the sense that it
is stronger in the braid shear layers. The asymmetrical nature of mode C is also clear
in the figure, as the stronger streamwise vorticity is observed in the side of the wake
closest to the vortex street formed from the upstream cylinder.

Figure 14 shows two snapshots of spanwise vorticity iso-surfaces of the unstable
mode C added to the base flow, taken at time instants one flow period apart. The
period-doubling character of mode C makes the waviness of the vortex cores at
the same location at consecutive periods have a phase difference of 180◦, as can be
observed looking to the far left vortices in figure 14. Another evidence of the period-
doubling character displayed in figure 14 is the alternation of the sign of the spanwise
vorticity, from one period to the next, in the shear layers close to the cylinder.

As previously mentioned, the period-doubling mode C was also identified by
Sheard et al. (2003), in stability calculations of the flow around bluff rings with
aspect ratio (ratio between the ring diameter and the cross-section diameter) greater
than 4.0. In that work they found a maximum growth rate for mode C for spanwise
wavelengths between 1.6D and 1.7D, which agrees well with the results of the present
investigation. They also reported that the smaller the aspect ratio was, the earlier
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(a) Mode A,  Lz /D = 4.000

(b) Mode B,  Lz /D = 0.830

(c) Mode C,  Lz /D = 1.570

Figure 13. Three-dimensional structures of the unstable modes, configuration Ly/D = 2.0,
Re = 300. The represented flow fields are linear combinations of the base flow and the unstable
Floquet mode. Translucent surfaces are iso-surfaces of |ωz|. Solid light grey and dark grey
surfaces are iso-surfaces of negative and positive ωx respectively.

(in terms of Reynolds number) mode C became unstable. The same behaviour was
observed in our staggered cylinder arrangements when Ly/D � 2.0, if we replace the
aspect ratio by Ly/D, as discussed in § 4.2.2. Furthermore, striking similarities between
the three-dimensional structure of mode C are found when comparing figure 13 to
the results presented in Sheard et al. (2004). The mode C wavelength found in the
present results is also reasonably close to the value of 1.8D reported in Zhang et al.
(1995). In that study, mode C appeared in their experiments when a thin control
wire was placed near the cylinder, and they reproduced this result in computational
simulations by enforcing zero velocity at the point of the mesh that corresponded to
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(a)

(b)

Figure 14. Iso-surfaces of spanwise vorticity, unstable mode added to base flow, configuration
Ly/D = 2.0, Re = 300, Lz/D = 1.570. The cylinder shown is the downstream cylinder. Solid
iso-surfaces are vorticity shed by the downstream cylinder (light grey iso-surfaces are negative
ωz and dark grey are positive ωz), and translucent iso-surfaces are vorticity shed by the
upstream cylinder (iso-surfaces of same absolute value of ωz as in the solid iso-surfaces).
(a) Snapshots at time (a) t and (b) t + T .

the coordinate of the centre of the control wire. We note that asymmetry is again
involved in the base flow.

4.4. Nonlinear analysis

In order to investigate the nonlinear evolution of mode C, fully three-dimensional
simulations were also performed. The configurations Ly/D = 1.0, 2.0, 2.5 and 3.0
were tested, and Reynolds numbers slightly higher than the critical Reynolds number
for mode C bifurcation (Rec) for each configuration were selected. For each case,
the periodic span of the domain was the wavelength of the mode C instability at
its onset and the initial condition was the unstable Floquet mode, multiplied by a
factor small enough to make the initial growth linear, added to the two-dimensional
periodic solution at a fixed time. This method of choosing the periodic length and the
initial condition was also adopted in Henderson & Barkley (1996) and Henderson
(1997), and has the advantage of enabling the clear observation of the evolution of
the mode. In all calculations reported in this subsection, eight Fourier modes were
used in the discretization in the spanwise direction.
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C instability (symbols) and growth predicted by linear calculations (continuous line). The
x-axis is non-dimensional time.

4.4.1. Ly/D = 1.0

In figure 15(a), it can be seen that the curve of the derivative of the amplitude
logarithm against the square of the amplitude has a positive slope close to the y-
axis, hence the bifurcation for mode C was subcritical for the configuration with
Ly/D = 1.0. It is worth noting how small is the range of |A|2 for which the curve
has a positive slope when compared to other cases of subcritical bifurcation (see,
for example, figure 17(a) of this paper and the cases of subcritical bifurcation in
Sheard et al. 2004). After this range, the curve follows an approximately straight line
of negative slope. In order to check if this region of positive slope was due only to a
initial transient and therefore not truly an indication of subcritical behaviour, a decay
test was performed, in which the saturated three-dimensional flow at Re =195, which
is above ReC , was used as initial condition for a simulation with Re = 187, which
is below ReC . By performing this test, we can ensure that the behaviour close to
|A|2 = 0 is free from any initial transient effects. The result showed a positive slope in
the vicinity of |A|2 = 0, confirming that the bifurcation is indeed subcritical. Further
evidence of the subcritical character can be found in figure 15(b), which shows that,
before saturation, the actual growth of the mode energy is clearly higher than the
prediction given by the linear calculations.

4.4.2. Ly/D = 2.0 and 2.5

The mode C bifurcation in these two configurations presented a supercritical
character, as can be seen in the graphs plotted in figures 16(a) and 16(c), which
have negative slopes for their entire range. The curves in these figures are linear
until fairly close to saturation; therefore, the nonlinear evolution of the mode within
this linear range can be described by a Landau equation with terms up to third
order. The coefficients of the Landau equation were calculated for both cases, and in
figures 16(b) and 16(d) it can be seen that the results of the simulations agree very well
with the Landau predictions until close to saturation. Since the difference between
the two curves is very small, we believe that the introduction of the fifth-order term
in the equation should be enough to provide a proper description of the instability
evolution. The third-order Landau equations predict a higher value of the saturated
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Figure 16. Results for three-dimensional simulation of cases Ly/D = 2.0, Re = 185, Lz/D =
1.65 (a, b) and Ly/D = 2.5, Re = 205, Lz/D = 1.45 (c, d). (a, c) The derivative of the amplitude
logarithm against the square of the amplitude. (b, d) The growth and saturation of the
amplitude in the wavelength corresponding to the mode C instability (symbols), growth
predicted by linear calculations (continuous line) and growth predicted by the Landau equation
(dashed line). The x-axis is non-dimensional time. The insets of these figures show diagrams
of the supercritical bifurcations.

amplitude than the results given by the simulations, both for Ly/D =2.0 and 2.5;
therefore we conclude that the coefficient of the fifth-order term should be negative.

The insets on figures 16(b) and 16(d) show that the energy approaches zero gradually
when the Reynolds number is decreased towards the critical value. Diagrams with
this shape are typical of supercritical bifurcations.

4.4.3. Ly/D = 3.0

For this particular configuration, the mode C bifurcation showed a subcritical
character, as can be inferred from the curve in figure 17(a), which exhibits a positive
slope close to the y-axis and whose non-rectilinear shape indicates that terms of
order higher than three must be considered in the Landau equation to adequately
describe the nonlinear evolution of the instability. Another subcritical attribute of the
bifurcation can also be discerned by analysing figure 17(b), where the energy related
to mode C wavelength, obtained from the three-dimensional simulations, grows at a
higher rate than that predicted by the linear theory. The inset in this figure shows the
hysteresis present in the vicinity of the critical point.
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Figure 17. Results for three-dimensional simulation of case Ly/D = 3.0, Re =215, Lz/D =
1.45. (a) The derivative of the amplitude logarithm against the square of the amplitude.
(b) The growth and saturation of the amplitude in the wavelength corresponding to the mode
C instability (symbols) and growth predicted by linear calculations (continuous line). The
x-axis is non-dimensional time. The inset of (b) show a diagram of the subcritical bifurcation.

In order to check if the period-doubling mode C leads to a period-doubling cascade
after the secondary instability, some additional three-dimensional simulations were
performed using a periodic spanwise wavelength of 12.0D. Runs with Re =350
were carried out for all configurations. Extra simulations were also performed for
(Ly/D =1.0, Re = 200), (Ly/D = 2.0, Re = 200) and (Ly/D = 3.0, Re = 250), since for
these intermediate cases only modes A and C were unstable and we were interested
to know how these modes interacted in the absence of mode B.

Velocity time histories at diverse points in the wake were monitored, and for all
configurations, no sign of a period-doubling cascade was observed. The spectra of the
velocity in the x- and y-directions were broad banded, with a dominant peak at the
vortex shedding frequency. In the cases with Re =200 and 250, a secondary peak at
half of the shedding frequency was observed in the spectrum of the x and y velocity
at points located in the near wake of the downstream cylinder, but this peak was not
observed further downstream and it was absent from all points monitored in the cases
with Re =350. Therefore, we concluded that modes A and B were dominant when the
full nonlinear interactions are considered, and this was confirmed by looking at the
evolution of the vorticity iso-surfaces in two shedding cycles, as no mode C structures
could be observed. The same behaviour was observed in the flow around bluff rings
(Sheard et al. 2005b).

5. Conclusion
Results have been presented from direct numerical simulations and Floquet stability

analysis of the flow around two circular cylinders in staggered arrangements. It
was not possible to carry out a Floquet stability analysis for the configuration
with Ly/D = 1.5, since the flow around this configuration was in the transition
range between two vortex-shedding regimes for all Reynolds numbers tested and,
consequently, the two-dimensional base flows were not periodic. For all other
configurations investigated, we have identified the different modes that take part in the
wake transition, using plots of the Floquet multiplier versus spanwise wavenumber
and neutral stability curves. With the help of vorticity contours, we have characterized
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the symmetries and periodicity of these modes. In addition, the nonlinear behaviour
of mode C has been investigated utilizing three-dimensional simulations.

The basic modes in the wake transition in the flow around a single circular
cylinder, modes A and B, were also found in the staggered arrangements considered
in this investigation. This enforces the thesis that these modes are fundamental in the
transition to turbulence in vortex street wakes, even in the case of multiple cylinders.
However, one important distinction between the staggered arrangements and the
single-cylinder case regarding modes A and B was the different critical Reynolds
numbers and corresponding perturbation wavelengths. Both modes originated in the
near wake of the upstream cylinder and for all arrangements investigated in the
present work, the flow in this region is very similar to that observed in the near wake
of an isolated cylinder. This indicates that the physical mechanisms responsible for
the manifestation of modes A and B should be the same as in the single-cylinder
case.

Another important finding of this study was the presence of mode C in the
wake transition for some asymmetrical arrangements. The linear stability results
for this mode agree well with previous investigations (Sheard et al. 2003; Zhang
et al. 1995) in many aspects, such as type of perturbation symmetry, wavelength
and periodicity. Interestingly, while modes A and B first appear in the near wake
of the upstream cylinder, mode C is initiated in the near wake of the downstream
cylinder.

The non-linear analysis also produced some interesting results. Mode C bifurcation
was subcritical for Ly/D =1.0, supercritical for Ly/D = 2.0 and 2.5 and again
subcritical for Ly/D = 3.0. However, since the vortex shedding regime for Ly/D = 1.0
is different from that for Ly/D � 2.0, the configuration Ly/D = 1.0 must be considered
separately if we want to isolate the three-dimensional effects.

For configurations Ly/D = 2.0 and 2.5 mode C presented a supercritical character,
but it bifurcated before mode A for Ly/D = 2.0 and after mode A for Ly/D =2.5.
For Ly/D = 3.0, it bifurcated after mode A, but through a subcritical route. Bearing
this in mind, we deduce that the character of the bifurcation of mode C is not directly
related to the order in which the modes bifurcate.

For Ly/D � 1.0, all three modes appear in the Reynolds number range investigated,
and the fact that mode C appears for two substantially different types of wakes
(Ly/D = 1.0 and Ly/D � 2.0) indicates that the vortex shedding regime and the
presence of mode C are not directly related, although both depend on the geometrical
configuration of the bodies. In addition, the results presented in this work corroborate
the hypothesis that mode C is a fundamental mode in the secondary instability of
time-periodic wakes which lose their H symmetry due to a perturbation imposed by
an external agent; in the present case, the external agent was the wake of the upstream
cylinder, in Sheard et al. (2003) it was the opposite side of the bluff ring and in Zhang
et al. (1995) the control wire placed close to the cylinder. Mode C seems to replace the
quasi-periodic mode that emerges in H-symmetric wakes (Blackburn & Lopez 2003;
Marques et al. 2004; Blackburn et al. 2005), spanning the same wavenumber range.
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Appendix. Calculation of the Floquet multipliers and modes
To calculate the Floquet modes, an operator representing the evolution of the

system in one period was constructed:

u′
n+1 = A(U)u′

n, (A 1)

where u′
n = u′(x, y, z, t0 + nT ) was the perturbation vector after n periods. The

eigenvalues of A are the Floquet multipliers of L and the eigenfunctions of A are the
Floquet modes at some instant in time t0, where t0 depends on the initial phase of
the base flow U used to construct A.

The action of operator A on the perturbation u′ was computed by integrating
the linearized Navier–Stokes equations, using the same schemes that were used to
compute the base flow. Two changes were necessary in the integration algorithm. The
first was that a linear operator (−(U · ∇)u′ − (u′ · ∇)U) had to be used to calculate
the advection terms. In this operator, the values of U were computed by means of a
Fourier interpolation of the time slices resulting from the base flow calculation. The
second change was to replace the operator ∇ by (∂/∂x, ∂/∂y, −iβ), and compute the
three velocity components (û, v̂, ŵ) and p̂ on the two-dimensional domains.

The Arnoldi method was used to compute the Floquet multipliers of largest
magnitude. We briefly describe this method here; for a more complete discussion
the reader should refer to Saad (1992). Essentially, this is an orthogonal
projection method of a matrix A onto a k-dimensional Krylov subspace Kk ≡
span{u, Au, A2u, . . . , Ak−1u}. Given an orthonormal basis Qk = [v0|v1| . . . |vk−1] of
the Krylov subspace Kk , it is possible to decompose the matrix A in the following
way:

AQk = QkHk + hk,k−1vkeH
k−1. (A 2)

Hk is a Hessenberg matrix, whose component on row i and column j is denoted as
hi,j , vk is a unitary vector orthogonal to the basis Qk and ek−1 is a unitary vector
pointing in the direction of the k − 1 component. Multiplying both sides of (A 2) on
the left by QH

k and using the fact that Qk is orthonormal results in

QH
k AQk = Hk. (A 3)

The eigenvalues λ
(k)
i of the Hessenberg matrix Hk are approximations of the

eigenvalues of the matrix A, and the approximate eigenvector of A associated with
λ

(k)
i , also called the Ritz eigenvector, can be calculated using the expression

w
(k)
i = Qk yk

i , (A 4)

where yk
i is the eigenvector of Hk associated with the eigenvalue λ

(k)
i . Some of the Ritz

eigenvalues are good approximations of the eigenvalues of A and the quality of the
approximation normally improves as k increases. An efficient way of estimating the
residual norm εi of the approximations is to use the expression

εi = hk,k−1

∣∣êH
k−1 y(k−1)

i

∣∣. (A 5)

An in-house implementation of a restarted Arnoldi algorithm was used to compute
the Floquet multipliers of largest magnitude. First, given a first perturbation vector u′

0

and using expression (A 1), a Krylov subspace Tk+1 of dimension k +1 was generated:

Tk+1 = {u′
0, u′

1, u′
2, . . . , u′

k} .
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Next, a QR factorization for the matrix Tk+1 was calculated, using the modified
Gram–Schmidt procedure, as presented in Golub & Van Loan (1996).

With the orthonormal basis Qk+1 for the Krylov subspace and the upper triangular
matrix Rk+1 (Tk+1 = Qk+1Rk+1), it is possible to derive a simple expression to calculate
the Hessenberg matrix Hk correspondent to a k-dimensional Krylov subspace Kk =
span {u′

0, u′
1, . . . , u′

k−1}. First, we multiply both sides of (A 3) on the right by Rk ,
and obtain

QH
k ATk = HkRk. (A 6)

Since Tk is generated by the Krylov sequence {u′
0, Au′

0, A
2u′

0, . . . , A
k−1u′

0}, we can
perform the decomposition

ATk = Qk+1R̄
(k+1)

k , (A 7)

where R̄
(k+1)

k is a (k+1)×k matrix composed of the k last columns of Rk+1. Substituting
(A 7) into (A 6), we obtain

QH
k Qk+1R̄

(k+1)

k = HkRk. (A 8)

Because the vectors that form the Q matrices are orthogonal, the left-hand side of
(A 8) can be written

QH
k Qk+1R̄

(k+1)

k = [Ik|0]R̄
(k+1)

k = Ř
(k+1)

k ,

so Ř
(k+1)

k is a k×k matrix made up of the last k columns and first k lines of matrix Rk+1.

Using the fact that both Ř
(k+1)

k and Rk are submatrices of Rk+1, the final expression,

Ř
(k+1)

k = HkRk , can be written in index form (ri,j and hi,j are elements on row i and
column j of the matrices Rk+1 and Hk respectively):

ri,j+1 =

j∑
l=0

hi,lrl,j ,

which can be rearranged in order to give the values of the matrix Hk:

hi,j =
1

rj,j

(
ri,j+1 −

j−1∑
l=0

hi,lrl,j

)
. (A 9)

Therefore, to resume the description of the implementation, after doing a QR
factorization for the matrix Tk+1, the matrix Hk was calculated using (A 9). The
eigenvalues and eigenvectors of Hk were calculated using the LAPACK routines
(Anderson et al. 1999), and the residual was estimated using (A 5).

In practice, a maximum value for the dimension of the Krylov subspace was
specified, and the actual k started with 1. In every iteration the value of k was
incremented, the Krylov subspace was updated, the calculations were carried out and
the residual was calculated. If the Krylov subspace dimension reached the specified
maximum size before convergence, a new vector in the Krylov sequence was generated
and the oldest vector was discarded, thus keeping the Krylov subspace size constant
and equal to the maximum size specified. This is equivalent to restarting the method
with the second oldest vector in the sequence. Once the required eigenvalues had
converged, the Ritz approximations of the correspondent eigenvectors of A were
computed using (A 4). If the converged Floquet multiplier was a complex pair, the
Ritz eigenvectors were calculated using the same approach as the LAPACK routines
(Anderson et al. 1999), using one vector for the real part and one for the imaginary
part, thus making it possible to fully reconstruct the Floquet mode.
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This implementation has the advantage of providing an explicit restart without
the disadvantage of resetting the size of the Krylov subspace to 1 again, as in the
method presented by Saad (1992). Compared to Implicit Restarted Arnoldi methods
(Lehoucq & Sorensen 2000), the method presented here is easier to implement. The cal-
culation of the action of the operator A(U) over the perturbation, which was actually
an integration in time, was much more expensive than the QR decomposition of the
matrix Tk+1; therefore the fact that the decomposition must be made in every iteration
was not a significant drawback when considering the total computational time.
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