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The wake transition of the flow around two circular cylinders placed in staggered
arrangements with fixed streamwise separation of 5D and cross-stream separation
varying from 0 to 3D has been studied. The wake transition is compared to that
of a single isolated cylinder. Linear stability analysis utilizing Floquet theory and
direct numerical simulations using a spectral/hp element spatial discretization were
carried out. The unstable modes that first appear in the wake transition of the flow
around a single cylinder, which are the long-spanwise-wavelength mode A and the
short-spanwise-wavelength mode B, are also found in the flow around the staggered
arrangements. However, a third mode, referred to as mode C, is also present in the
wake transition of the flow around staggered arrangements, depending on the relative
positioning of the cylinders. This mode has an intermediate spanwise wavelength and
period-doubling character. The structure and onset characteristics of mode C are
analysed and the nonlinear character of the bifurcation for this mode is investigated.

1. Introduction

The flow around circular cylinders has been extensively studied owing to its practical
importance in engineering and scientific relevance in fluid mechanics. On the engineer-
ing side, there are a number of applications in mechanical, civil and naval engineering
that employ circular-cylindrical structures, such as heat exchangers, chimneys and off-
shore platforms. In scientific terms, the flow around circular cylinders presents various
important physical phenomena, such as separation, vortex shedding and transition.

In the next two subsections, some of the relevant research that has been carried out
on two different aspects of this flow is reviewed. These aspects are the wake transition
in bluff body flows and the flow around circular cylinders in staggered arrangements,
illustrated in figure 1.

1.1. Secondary instabilities in the wake

In the last two decades, much effort has focused on the study of the three-dimensional
transition that takes place in the von Karman wake that appears in the flow
downstream of a single cylinder. This line of research in its contemporary form
was instigated by the seminal work of Williamson (1988), in which two distinct stages
were identified in the wake transition, spanning 160 < Re <300. The limits of these
stages were identified by discontinuities in the curve obtained when the Strouhal
number (St) was plotted against the Reynolds number (Re) and these discontinuities
correspond to the manifestation of different three-dimensional structures in the
wake. The first to appear is called mode A, and it has a spanwise wavelength of
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FIGURE 1. Schematic drawing of two circular cylinders in a staggered arrangement.

approximately 4 diameters. The second is called mode B, and its spanwise wavelength
is close to 1 diameter. A number of papers on additional experiments and direct
numerical simulations (DNS) for this Reynolds number range have been published
since then with the aim of reproducing these findings, see for example Wu et al.
(1994), Zhang et al. (1995) and Thompson, Hourigan & Sheridan (1996). A great
leap forward occurred with the work of Barkley & Henderson (1996), who performed
high-accuracy Floquet stability analyses of two-dimensional time-periodic base flows,
precisely identifying the critical Reynolds numbers and also characterizing each of
the modes that take part in the wake transition. Williamson (1996) presented an
extensive study on the wake transition, setting the most significant results presented
so far against some new experimental data in order to show the different symmetries
of the modes and to put forward physical mechanisms to explain the origin of the
instabilities. He proposed that mode A originates from a elliptic instability in the
near-wake vortex cores, while mode B is a manifestation of a hyperbolic instability in
the braid shear layers. The research on the physical mechanisms of modes A and B
was extended in Leweke & Williamson (1998) and Thompson, Leweke & Williamson
(2001). The nonlinear characterization of the bifurcations through which the wake
becomes three-dimensional was first assessed by Henderson & Barkley (1996), who
found that mode A became unstable through a subcritical bifurcation. This work
was extended by Henderson (1997), where it was concluded that mode B bifurcated
through a supercritical route. Various other computational papers have expanded the
research on the nonlinear features of the first stages of the wake transition, see for
instance Persillon & Braza (1998) and Posdziech & Grundmann (2001).

Techniques similar to that presented in Barkley & Henderson (1996) have been used
to perform Floquet stability analysis of the flow around other bluff bodies. Robichaux,
Balachandar & Vanka (1999) analysed the stability of the wake of the flow around a
square cylinder, and found that, besides modes A and B, the geometrical configuration
they used presented a third mode of intermediate wavelength, which was called mode
S. The authors suggested that this was a period-doubling bifurcation, i.e. an instability
whose Floquet multiplier is real and negative. Later, however, Blackburn & Lopez
(2003) showed that this was in fact a quasi-periodic mode (the Floquet multiplier
is complex), and that the mistake was due to the method used in Robichaux et al.
(1999), which only allowed the identification of the real part of the Floquet multiplier.
This quasi-periodic mode, known as mode QP, was also observed in the wake of a
circular cylinder in Blackburn & Lopez (2003) and Barkley & Henderson (1996),
but it was stable in the Reynolds number range investigated. Later, Blackburn,
Marques & Lopez (2005) presented results of Floquet stability analysis of the flow
around a single cylinder carried out for higher Reynolds numbers, and showed that
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the mode QP becomes unstable for Re ~377. Marques, Lopez & Blackburn (2004),
using bifurcation theory, showed that only three modes, modes A, B and QP, could
possibly be observed in a two-dimensional time-periodic wake with a spatio-temporal
symmetry :

H(u,v)(x,y,t) = (u, —v)(x, —y, 1+ %T)

where u and v are the x and y velocity components and 7T is the period of the wake.

However, for bluff body wakes that do not present this symmetry, a period-doubling
mode has also been found. As far as we are aware, the first evidence of this period-
doubling mode, which is commonly called mode C, appears in the computations
and experiments in Zhang et al. (1995) when a tiny trip wire was placed close to
a circular cylinder. More recently Sheard, Thompson & Hourigan (2003) identified
this mode in the flow around bluff rings by means of Floquet stability calculations.
This was extended in Sheard, Thompson & Hourigan (2004), in which a nonlinear
characterization of mode C was made by means of DNS. Subsequently, additional
computational results were compared to experimental data in Sheard et al. (2005b)
and, more recently, in Sheard, Thompson & Hourigan (2005a) a physical mechanism
to explain how the mode C instability is sustained has been suggested.

1.2. The flow around circular cylinders in staggered arrangements

An important aspect of the flow around bluff bodies such as circular cylinders is
that, if two or more bodies are placed in close proximity in the fluid stream, the flow
field and fluid loads change dramatically compared to the flow around an isolated
body. This phenomenon is known as flow interference. Comparatively few papers
on the flow around groups of cylinders have been published, despite the fact that
in all the applications cited at the beginning of this section it is common to have
circular-cylindrical structures grouped together. The usual approach is to consider
only a pair of cylinders of equal diameter, since in such configurations the number
of parameters is kept sufficiently low for a proper systematic analysis and the basics
of the interference mechanisms can be more easily understood.

An example of this can be found in Zdravkovich (1977), in which an extensive
review of flow interference between two circular cylinders in tandem, side-by-side
and staggered arrangements was conducted. For all these configurations, discussions
about pressure distributions, velocity profiles, flow regimes and patterns, drag and
lift forces and Reynolds number effects were presented. In relation to staggered
arrangements, Zdravkovich (1977) investigated the physical origin of the non-zero lift
forces that are observed for these configurations. Later, Sumner, Price & Paidoussis
(2000) put forward a taxonomy for the flow regimes observed in their experiments with
staggered arrangements. Based on flow visualization and force measurements, nine
different patterns were identified according to the relative position of the cylinders.
This work was extended by Akbari & Price (2005), who reproduced the flow regimes
using computational simulations and scrutinized the physical features observed in
each.

As far as we are aware, no computational work addressing the three-dimensional
aspects of the flow around staggered arrangements of circular cylinders has yet been
published. This paper focuses on the changes that occur in the transition in the
wake when the flow around staggered arrangements is compared to the flow around
a single cylinder. The instabilities that arise at the beginning of the transition are
characterized by means of linear stability analysis of two-dimensional periodic base
flows and also fully three-dimensional simulations.
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The paper is organized as follows. In §2, the numerical methods used to calculate
the base flows and their stability are described. Details of the parameters used in
the simulations are given in §3, and in §4 the results are presented and analysed.
Finally, in § 5, conclusions are drawn regarding the effect of the relative position of
the cylinders on the three-dimensional bifurcation scenario.

2. Overview

The methodology adopted in this paper can be divided into three distinct parts.
The first refers to simulations of two-dimensional time-dependent flows by means
of numerical solution of the incompressible Navier—Stokes equations. The second
comprises stability calculations of two-dimensional time-periodic flows with respect
to three-dimensional perturbations, and this is achieved using Floquet theory. Finally,
the third part consists of three-dimensional simulations of selected cases, in order
to analyse the nonlinear behaviour of some of the bifurcations found. In the next
three subsections, an overview of the mathematical formulation and computational
implementation of each of these techniques is provided.

2.1. Two-dimensional base flow calculation

We consider a two-dimensional incompressible viscous flow, which is governed by the
Navier—Stokes equations. These equations can be written in non-dimensional form
using the cylinder diameter D as the reference length and the free-stream flow speed
U, as the reference speed:

d 1
ou =—(u-V)u—Vp+FeV2u, (2.1)

at
Veu=0, (2.2)

where u =(u, v, w) is the velocity field, ¢ is the time, p is the static pressure and
Re=U,D/v is the Reynolds number, where v is the kinematic viscosity. The pressure
is assumed to be scaled by the constant density p.

These equations were discretized following the Spectral/hp method as described in
Karniadakis & Sherwin (2005). To generate the base flows, equations (2.1) and (2.2)
were solved in two dimensions, using a stiffly stable splitting scheme (Karniadakis,
Israeli & Orszag 1991).

2.2. Floquet stability analysis

For this part, a similar approach to that utilized in Barkley & Henderson (1996)
was used. We considered periodic two-dimensional base flows U(x, y, t), with period
T, and investigated their stability with respect to an infinitesimal three-dimensional
perturbation u'(x, y, z,t). The equations that govern the perturbation evolution to
leading order are the linearized Navier—Stokes equations:

ou’
ot

1
=—(U-Vu' — (' -V)U —Vp' + EVzu’, (2.3)
Veu' =0, (2.4)

where p'(x, y, z, t) is the pressure perturbation. The velocity boundary conditions that
were imposed on this system are #' =0 on boundaries where Dirichlet conditions are
specified for the base flow, and du’/dn =0 on boundaries where Neumann conditions
are specified for the base flow.

The right-hand side of (2.3) subjected to the incompressibility constraint of equation
(2.4) can be represented by an operator L, so we can write the evolution equation in
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the compact form:

ou'

ot
The operator L(u') is T-periodic because it depends linearly on the base flow U(x, y, t),
which is T-periodic. Therefore, the stability of (2.5) can be investigated using Floquet
analysis. The solutions of (2.5) can be decomposed into a sum of solutions of the
form @(x, y, z, t)e°’, where @(x, y, z, t), which are called Floquet modes, are T-periodic
solutions. The complex exponents o are the Floquet exponents, and the sign of their
real parts determines the stability of the system. However, in Floquet-type problems
it is more usual to consider the Floquet multiplier u=e°7 instead of the Floquet
exponent. If the Floquet multiplier is located inside the unit circle (Ju| < 1), then the
solution will decay exponentially with time, and if the multiplier is located outside
the unit circle (|u] > 1), the solution will grow exponentially with time, rendering the
system unstable.

If we consider a system that is homogeneous in the spanwise direction z, a further

simplification can be made. A perturbation of the velocity field can be expressed in
terms of the Fourier integral:

= L(). (2.5)

o0

w'(x,y, z,1) :/ i(x,y, B, 1)e’*dp (2.6)
—00

and similarly for p’. Since equation (2.5) is linear, modes with different 8 do not

couple. Moreover, because the base flow z-velocity component is zero, perturbations

of the form

u'(x,y,z,t) = (it cos Bz, v cos Bz, wsin Bz), (2.7)
p'(x,y,z,t) = pcospz (2.8)

remain of this form under the operator L. Thus, the Floquet modes #(x, y, z,t)
will necessarily be of this form. The expressions (2.7) and (2.8) are appropriate to
represent a Floquet mode corresponding to a real Floquet multiplier. However, if the
multiplier is complex (as in the case of the QP mode in Blackburn & Lopez 2003)
then a Fourier mode containing both real and imaginary components is necessary
to represent the Floquet mode. As the velocity components (i, d, @) and pressure p
depend only on x, y and ¢, the three-dimensional stability problem can be reduced
to a series of two-dimensional stability problems, each with a different value of 8.
Consequently, the stability of such two-dimensional incompressible periodic flows to
three-dimensional perturbations can be analysed by computing the Floquet multipliers
and corresponding modes as a function of Re and 8. Details on how the Floquet
multipliers and modes were calculated are given in the Appendix.

2.3. Three-dimensional simulations and nonlinear characterization of the transition

Linear stability calculations can predict the critical Reynolds numbers and unstable
mode topology and wavelength. However, in order to comprehend the evolution of
the instability beyond its onset, nonlinear effects have to be taken into account, and
full three-dimensional simulations must be carried out.

The three-dimensional computational calculations utilized the same framework
as outlined in §2.1. However, the spanwise direction was treated using a Fourier
expansion in the discretization. This approach was introduced by Karniadakis (1990)
and has been often employed since then in cases where the geometry has one
homogeneous direction. The meshes utilized in the two-dimensional simulations can
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be re-used, since the three-dimensional domains for this type of calculation consist
of two-dimensional discretizations repeated in the spanwise direction. In addition,
the way the solution algorithm is developed makes the parallelization of the code
straightforward and efficient.

The three-dimensional simulation results enabled a nonlinear analysis of the
transitions to be conducted. The Landau equation has often been successfully used
in hydrodynamics as a low-dimensional model to describe the nonlinear behaviour
of transitions close to their respective critical points (see for example Sheard et al.
2004; Henderson 1997; Provansal, Mathis & Boyer 1987; Dusek, Le Gal & Fraunié
1994; Noack & Eckelmann 1994). The idea behind this equation is that for a small
perturbation amplitude A the linear term determines the behaviour of dA/dz. If
the system is unstable the modulus of A grows and the higher-order terms become
important at a certain point. Here, the Landau equation is written up to third order,
using the same notation as in Sheard et al. (2004):

dA ‘ .
o = (0 +iw)A—I(1 +ic) APA+---, (2.9)

where A(r) is the complex amplitude of the perturbation mode being considered.

The term (o +iw) in (2.9) is the eigenvalue obtained from the linear stability analysis,
and in the present case is the Floquet exponent. To first-order approximation, the
perturbation grows at a rate given by o, so the flow is stable if o is negative and
unstable otherwise. In addition, still to first-order approximation, the perturbation
oscillates with angular frequency w, which is non-zero for a Hopf bifurcation. The
parameter [ is the real part of the third-order coefficient and the classification of
the transition depends directly on its sign. If />0, the transition is supercritical,
thus non-hysteretic, and the behaviour of the transition until saturation should be
adequately described by the Landau equation truncated at third order. The reason
for this is that the real part of the third-order term is negative and counter-balances
the growth provoked by the first-order term, eventually making the instability reach a
saturated state, so no higher-order terms are necessary. On the other hand, if [ <0, the
proper description of the transition requires terms of at least fifth order, as both first-
and third-order terms promote the growth of A and the numerical and experimental
observations indicate that this growth must saturate at some point. In this case, the
transition is said to be subcritical. Lastly, ¢ is called the Landau constant and it
modifies the oscillation frequency at saturation.

The complex amplitude A can be written in polar form, A(t)= p(t)e'®"”), and after
some simple algebra is performed, the real and imaginary parts of (2.9) become

dl‘zﬁ(” L (2.10)
do
a = w—lcp>. (2.11)

Given (2.10), a graph of d log(|A|)/dt against |A|?> can be plotted and used to determine
the values of o and [. The value where the curve intercepts the y-axis is o and the
slope of the curve close to the y-axis gives —I. If the cubic truncation of the Landau
model is sufficient to describe the transition, then this plot should be linear; if not,
then at least fifth-order terms are necessary to describe the transition.



Wake transition in cylinder staggered arrangements 7

40 - [ |
| __,,-—-""-’-‘
20 .-"’-—F-—'
: - Nl
y 0
720 -
40
1 Uiyl i i oAl m '
=20 20 40 60 80 100

X

FiGUure 2. Example of a mesh used in the calculations.

Lastly, the amplitude A must be defined in terms of flow variables. In the present
work, this amplitude is defined by

12
A()] = [ / fn(x,y,r)ﬁ} |

where £2 is the two-dimensional cross-section of the domain being considered and
i1(x, y, t) is the coefficient at time ¢ of the Fourier expansion term whose wavenumber
is the same as the instability in question. A similar expression was used in Henderson
& Barkley (1996) and Henderson (1997); the only difference is a multiplicative
constant.

3. Numerical simulations

Figure 1 shows a schematic drawing of the geometry investigated in this research.
The two cylinders have the same diameter D. For all cases, the streamwise distance
between the centres of the cylinders, L,, is 5D. This distance was chosen because, in
a previous study that considered pairs of circular cylinders in tandem arrangements
with different L,/D (Carmo 2005), the configuration with L,/D =35 presented the
highest RMS value of the lift coefficient and was outside the L, /D range for which the
transition between different vortex shedding regimes occurs (Mizushima & Suehiro
2005). The transversal distance, L,, was varied from O to 3D, with intervals of
0.5D. Calculations were also carried out for the single-cylinder case, which served
as a benchmark for comparison with the two-cylinder cases. The Reynolds numbers
simulated were 200, 250, 300 and 350, covering the wake transition range for the flow
around a single cylinder.

Quadrilateral meshes were generated for the computations; an example is shown in
figure 2. The size of the domain and the discretization approach were chosen based
on a previous work (Carmo 2005), in which an extensive convergence study was made
considering the flow around a single cylinder and using the same numerical method.
The upstream boundary (boundary at the left-hand side in figure 2) is located 36D
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from the upstream cylinder centre, the side boundaries (top and bottom boundaries
in figure 2) are located 45D from the closest cylinder centre and the downstream
boundary is located 95D from the downstream cylinder. The domains extended far
downstream in order to consider the vortex interaction that takes place in the far
wake, as reported in §4.1. The number of elements for the mesh with a single cylinder
was 466, and for the meshes with two cylinders the number of elements varied from
568 to 721, depending on L,. The meshes were the same for all Reynolds numbers,
varying only according to the geometrical configuration.

Eighth-degree polynomial expansions were used as basis functions for the spatial
discretization, and the integration in time was second-order accurate. The value of
the non-dimensional time step varied from 0.004 to 0.006, depending only on the
Reynolds number. Uniform stream velocity boundary conditions (u =1, v=0) were
imposed at the upstream boundary and upper and lower surfaces of the computational
domain. At the cylinder walls, a no-slip condition (u =0, v =0) was imposed, and at
the downstream border Neumann boundary conditions, du/drn =0, dv/dn =0 were
applied. For the pressure, the high-order boundary condition proposed by Karniadakis
et al. (1991) was used on all boundaries.

The periodic base flows were calculated using direct numerical simulation,
employing the method described in §2.1. The first step in the process was to let
the simulations reach an asymptotic, time-periodic state. In order to check if the
system had reached a time-periodic state, the time history of the upstream cylinder
lift coefficient calculated at every time step was recorded. Next, ten consecutive peak
values and the times at which these peak values occurred in the series were taken. If
the ratio between the standard deviation and the mean of these peak values and also
the ratio between the standard deviation and the mean of the time interval between
two consecutive peaks were less than 0.5%, then the simulation was considered to
have reached a periodic state. Subsequently, 32 equally spaced snapshots of the
velocity solution were recorded per cycle. These snapshots were used to generate the
base flow for the stability calculations. In the single-cylinder cases, only one vortex
shedding cycle was considered for the Floquet calculations. However, for all cases
with two cylinders, two vortex shedding cycles were used for the Floquet calculations,
because the vortex interaction that took place in the far wake had period 27, where
T is the vortex shedding period (see §4.1).

For all stability calculations, a Krylov subspace of dimension of 10 was used,
and the perturbation initialized with the field («', v') = (f, f), where f is the positive
number that causes the field to have a unitary norm. The calculations were carried
out until the residual of the largest eigenvalue reached a value less than 107>.

The numerical method used here has been previously utilized both for direct
numerical simulations (see the examples and references in Karniadakis & Sherwin
2005) and Floquet stability calculations (Barkley & Henderson 1996; Robichaux
et al. 1999; Sheard et al. 2003), in which convergence for these applications has been
verified. However, it was necessary to determine whether the size and discretization
of the domains were adequate for the cases investigated in the present work.

For this reason, additional simulations were carried out for the cases (L,/D =.0,
Re=200), (L,/D =0, Re=350), (L,/D =3.0, Re=200), (L,/D =3.0, Re =350). Two
refinements were considered separately: the first was to increase the polynomial degree
from 8 to 10, and the second to extend the original mesh by 5D on all four external
boundaries. For this validation exercise, the base flow was calculated and the Floquet
stability analysis was carried out with a fixed value of 8D =2.0, using the base flow
generated with the largest mesh. The parameters monitored in the base flow results
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Number of base flow snapshots L,/D=0 L,/D =30
in two shedding cycles Re =200 Re=350 Re=200 Re=350
16 1.11919 4.66509  0.847345  4.40672
32 1.14009 5.05173  0.860698  4.40394
64 1.13150 486170  0.852712  4.20596
128 1.13184 485856  0.852498  4.19924

TaBLE 1. Convergence of the dominant eigenvalue for 8D = 2.0, varying the number of
equally spaced snapshots used to reconstruct the base flow.

were the Strouhal number (Sf), the mean drag coefficient and the RMS of the lift
coefficient, all of which were evaluated for both cylinders, and from the Floquet
calculations the value of the Floquet multiplier was also tested for convergence. In
all cases, all parameters varied less than 1% when the refined meshes were compared
to the reference meshes.

In addition, further tests were performed in order to ensure that considering 32
snapshots per shedding cycle was sufficient to properly reconstruct the base flows.
The same cases used in the refinement test were re-run varying the number of base
flow snapshots from 16 to 128 over two shedding periods. The results displayed in
table 1 show that the difference between the values of the Floquet multiplier obtained
using 64 and 128 snapshots over two shedding cycles was less than 0.2%, confirming
that 32 snapshots per shedding cycle are enough to satisfactorily describe the base
flow.

For the three-dimensional simulations, the meshes and parameters of the
corresponding two-dimensional cases were re-used, and periodic boundary conditions
were set on the boundary planes located at the extreme values of z.

4. Results
4.1. Base flow calculations

The vortex shedding regime in the base flow changed significantly in the range of
L, investigated. The changes in the regime can be observed in figure 3, which shows
instantaneous vorticity contours for different L,. The Strouhal number (St) was
calculated by performing a fast Fourier transform of the lift coefficient time history
of both cylinders. For every case in the present work, the Strouhal number for the
upstream cylinder was the same as obtained for the downstream one.

Analysing figure 3(a), it can be seen that, for L,/D =0, the vortices shed by
the upstream cylinder hit the downstream one. We believe that the pressure and
velocity fluctuations imposed near the second body synchronized the vortex shedding.
For 0.5<L,/D < 1.0, the vortices shed from the upstream cylinder did not directly
impinge upon the downstream cylinder, but interacted with the vortex being shed
from the lower surface of the downstream cylinder, stretching and pulling it from the
near wake of the second cylinder, as shown in figure 3(b). In all cases with L, /D < 1.0,
the vortex interactions that took place in the near wake of the downstream cylinder
were notably different from those in the near wake of the upstream cylinder, as we
can see in figures 3(a) and 3(b). In the upstream near wake, the interaction between
one vortex and the shear layer of opposite-sign vorticity on the other side of the
cylinder, which, according to the model proposed in Gerrard (1966), eventually leads
to the shedding of a vortex formed in the previous half-cycle, was always very clear.
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FiGURE 3. Instantaneous vorticity contours, Re =200. Contours vary from w,D/U,, =—2.2
(light contours) to w,D/U, =2.2 (dark contours).

On the other hand, the shedding in the near wake of the downstream cylinder seemed
to be forced by the influence of the upstream wake. The wake of the downstream
cylinder was much wider and no strong interactions between vortices and shear layers
of opposite sign were observed in the near wake of the downstream cylinder.

We can see in figure 3(d) that, for configurations with L,/D > 2.0, the interaction
between vortices of the near wakes of the downstream and upstream cylinders
became weaker and the vortices originating from the downstream cylinder were
not deformed nor significantly pulled towards the upstream wake. In addition, the
shedding mechanisms in both near wakes are very similar, corresponding qualitatively
to what happens in the near wake of the flow around a single cylinder. Nevertheless, a
synchronization of the wakes due to the proximity of the vortices can still be observed.

The arrangement with L,/D =1.5 could not be classified into either of the two
regimes presented above. The flow around this configuration is in the transition range
between these two regimes, being very unstable in terms of the patterns observed
in the wake downstream and corresponding to a peak in the absolute value of the
mean lift coefficient of the downstream cylinder. In figure 3(c), we see that the vortex
formed from the bottom of the downstream cylinder (the positive vortex) is split, and
part of it merges with the wake of the upstream cylinder, while the rest follows the
direction of the downstream cylinder wake. However, this does not occur regularly
every cycle; on some occasions the complete vortex is pulled towards the upstream
cylinder wake. For Re > 250, the behaviour of the vortex in question in each cycle
appears random.

For every configuration with two cylinders, irrespective of the values of L, and Re,
different kinds of vortex interactions were observed in the far wake. This interaction
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FIGURE 4. Instantaneous vorticity contours, Re =250. Contours vary from w,D/U,,=—2.2
(light contours) to w,D/U,, =2.2 (dark countours) for (a) and (») and from w,D/U,,=—1.1
(light contours) to w,D/U, =1.1 (dark countours) for (c).

took place in a limited region, and gave rise to a different vortex configuration in the
wake downstream, which will here be referred to as a secondary wake. The secondary
wake had a period of 27, where T was the period of vortex shedding, because
its formation always involved the merging of vortices from two successive cycles.
Figure 4 shows instantaneous vorticity contours, focusing on the vortex interaction
region that arises in the far wake, for three different configurations. It should be
noted that the type of interaction is very different in each of the illustrated cases,
although all of them involve vortex merging. For L,/D < 1.5, this vortex interaction
region appears between 10D and 20D downstream of the front cylinder, while for
configurations of higher L, when two distinct wakes are observed, this region appears
further downstream, at distances as far as 30D downstream of the front cylinder.
Similar patterns in the far wake were observed in smoke visualizations performed by
Zdravkovich (1972) for different tandem and staggered arrangements.
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FiGURE 5. Flow around a single cylinder. (a¢) Modulus of the Floquet multiplier, ||, as a
function of the spanwise wavenumber times the cylinder diameter, 8D, for various Reynolds
numbers. (b) Neutral stability curves (curves that pass through points where || = 1), plotted
in a map of Reynolds number (x-axis) and mode non-dimensional wavelength (y-axis); in the
region on the right hand side of the curves the two-dimensional periodic flow is unstable with
respect to three-dimensional perturbations; continuous and dashed curves are f